No categories assigned

Setting Up Virtual Sets with Tracked Cameras

Note that this documentation assumes that you already familiar with the standard setting up of a virtual studio system with virtual cameras. If not please consult Setting Up Virtual Sets with VR Cameras.

Inputs and Outputs

Setting up camera and other SDI inputs and specifying the outputs is done exactly the same way as with the virtual cameras, so please watch the video above.

setuptrkcam image9.png

setuptrkcam image30.png

Defining camera tracking devices

By default no camera tracking devices is listed in the system. First you have to select what brand you want to use and with what network configurations.

Go to Device Mapper and click Manage Devices at the bottom.

setuptrkcam image13.png

Scroll down to the Camera Tracking section and select the device brand you plan to use.

Firstly specify the Data rate, the rate the tracking system sends position information at. For e.g. if you work with an 50i based studio system the rate most likely will be 50. Some systems send data at a multiplied rate though, for e.g. 200.

Then you have to add the device or devices that connected to your machine by clicking Add.

setuptrkcam image17.png

The different brands require different network setups.

For e.g. if you use Mo-sys, you can select between serial port and UDP based solutions and in both case you have to specify an input port and a Camera ID. The latter is used because data from multiple cameras can be received through a single port simultaneously.

setuptrkcam image57.png setuptrkcam image1.png

In the case of Stype only a UDP port has to be specified:

setuptrkcam image2.png

Ncam is a TCP based system, therefore you have to specify both a server address and a port:

setuptrkcam image5.png

If you use multiple tracked cameras you have to add several devices with different ports / Camera IDs.

setuptrkcam image4.png

setuptrkcam image17.png

Thoma is a special case, you only have to specify an UDP port, but it will appear as 4 different devices in the system, since a Thoma system send a packed data of 4 cameras simultaneously.

After adding all necessary tracking devices click OK. Composer will restart.

Mapping camera tracking devices

Go to Device Manager / Camera Tracking. Now you’ll see all the tracking devices you’ve added previously in the dropdown list.

Suppose we’ve added three Stype devices.

setuptrkcam image27.png

The tracking device that is mounted on the camera that is defined as video input #1 in Aximmetry have to be defined as the tracking device #1. Same goes for #2, #3 etc.

setuptrkcam image8.png

Lens data

Some tracking systems, like Stype, provide their own lens calibration system, and always send all the FOV and lens distortion data along with the camera position, according to the current zoom state of the lens. In this case you do not have to select any further option.

Other tracking systems only provide camera position data. In this case Aximmetry’s own Camera Calibrator application has to be used to produce the lens data for each camera’s. This is discussed in a separate documentation. When all the data is produced, you can select an appropriate lens data file for each tracking device using the Mode column in the Device Mapper.

If you finished with mapping the devices you can click Start.

Control Boards

In your compound you have to use one of the TrackedCam_xxxx.xcomp modules to access the features related to tracked cameras.

You can find an example in the News Room - TrackedCam_3-Cam.xcomp stock scene.

setuptrkcam image14.png

Its control boards is somewhat similar to the ones used with virtual cameras. But you need additional setup and also the billboards work very differently. Let’s see.


If you’ve followed the Device Mapper setup we described above then for each INPUT you leave the default Device selections both for Camera and Tracking. It’s Mapped #1, #2 etc for each inputs.

setuptrkcam image21.png setuptrkcam image24.png

What needs your attention is the Delay values. The camera video frames and the corresponding tracking data packets arrive at different times to the rendering system, depending on the hardwares you’re using. You have to compensate the difference manually, by watching the output and adjusting the Tracking Delay value while you (or your collegue) makes sudden movements with the camera.

setuptrkcam image42.png

The delay value is measured in frames meaning the current video frame time of the system, for e.g. 1/25 seconds if you use an 50i system.

IMPORTANT: the delay value can be fractional (for e.g. 2.5), since there is no guarantee that the difference can be expressed in whole frames.

Ideally both the cameras and the tracking devices are genlocked which ensures that the delay you’ve set remain constant - but the delay value itself still can be fractional.

The example above is suitable if the tracking data arrives earlier than the correspondig video frame. In most cases this applies.

But in the case of some tracking systems the opposite is true. In this case you have the following options.

a) You can specify a negative value for Tracking Delay to a certain degree.

setuptrkcam image33.png

The threshold is determined by the global In-to-out latency of the system you’ve set in Preferences. If you cross the negative threshold, you’ll get a Cannot keep latency error message in the log and you tracking will stutter.

b) In this case you can increase the global In-to-out latency until you can reach the desired negative value for Tracking Delay.

setuptrkcam image41.png

c) You can also increase the Camera Delay of the individual input.

setuptrkcam image36.png

NOTE that in this case the particular camera image will be late compared to the other cameras, so this is not an ideal solution.


On the MONITOR panels you can find the same Input and Keyed modes you’ve already familiar from the VirtualCam boards. Keying is done exactly in the same manner.

setuptrkcam image52.png

The only difference that there’s no Cropped mode. The reason for this is for a tracked system a simple 2D cropping is not suitable. You need 3D masks that moves and rotates with the camera to always ensure the cropping of the out-of-green parts of your studio.

Studio setup

And exactly this purpose is served by the Studio mode.

setuptrkcam image35.png

In this mode you’ll see a box-shaped schematic studio model overlayed on the camera input image. You can use the properties of the STUDIO panel to mark the green and non-green areas of your physical studio on this schematic model.

setuptrkcam image61.png setuptrkcam image47.png

Via Base Cam Transform you can align the orientation of your physical room to the walls of the schematic model.

By adjusting Front Wall, Left Wall etc. you can set a size for the model to approximate the walls of your studio.

With the Green xxxx properties you can approximate the green surface on the front and side walls and on the floor. The numbers represents the distance of the edges of the green from the corners.

You do not have to be absolute precise to the millimeters. The point is that wherever you move or rotate the camera the green surface of the model always remain in the boundaries of the real green screen.

The result should look something like this:

setuptrkcam image19.png

setuptrkcam image29.png

As you can see you can also use two virtual markes to mark certain features of the physical room, thus you can check the quality of the tracking more precisely.

Also you can set the opacity of the schematic model.

setuptrkcam image56.png

Aligning the virtual set

Having set up the studio mask you can switch to Final mode to adjust the final composite image.

setuptrkcam image15.png

On the SCENE panel you can align the orientation of virtual set and the talent using the Base Cam Transf property.

IMPORTANT: do not confuse this property with the one on the STUDIO panel with the same name. The latter aligns the schematic studio model with the studio room, while this one places the talent within the virtual set.

setuptrkcam image44.png setuptrkcam image50.png

setuptrkcam image10.png

Edge Expand

As you can see the image above has ugly black bands on the edges. The reason for this is that the lens distortion data coming from the tracking system is applied to the virtual background to match it with the distortion of the camera image. In this case the distortion pulls the image towards the center.

To eliminate the black edges we have to render the image in a larger resolution an apply the distortion on that larger image. The property that controls this the Edge Expand. Increase it gradually by hundreths until the borders are gone. Do not use a value that is unnecessary large, because it can have a seriuos performance impact.

setuptrkcam image26.png

setuptrkcam image22.png

Note that the different zoom states have different distortions, so you have to check Edge Expand for all zoom states.

Light wrapping

To blend the talent into the background smoothly use the LIGHT WRAP panels.

setuptrkcam image58.png setuptrkcam image59.png

setuptrkcam image38.png

Compositing modes

By default the talent image is simply overlayed on the virtual background without any modification. This is the most basic usage. It’s perfect if you do not need any coverage of the talent by the virtual objects.

Talent coverage: using the billboards

What if we want to place the talent behind a table for example? In this case we somehow have to produce a mask from the table to cut out the talent image.

If you use one or more billboards this effect is provided automatically.

Billboards here behave very differently from the ones used in VirtualCam. They only serve as 3D masks that cut out a part from the talent image.

To use them turn on Use Billboards on the SCENE panel.

setuptrkcam image6.png setuptrkcam image34.png

Each camera input can have a maximum of three billboards. The reason for this that the camera can show multiple people at once. If, for e.g., we want them to stand around a table we need a more complex mask that can be provided by smart usage of multiple billboards.

But now let’s start with a single-billboard case. Switch on one billboard and switch off all the others for INPUT 1.

setuptrkcam image32.png

By also switch on the lightbulb icon you can see the actual extend and position of the billbard which eases the placing of it.

setuptrkcam image37.png

setuptrkcam image18.png

Note that it is possible that initially you do not see the talent at all. It is because the billboard is located somewhere offscreen in the scene.

Therefore we suggest you use the Lock To Camera option at first. It always keeps the billboard in front of the camera at a fixed distance specified by the Locked Distance property. Adjust the distance, the size and optionally the shift and rotation of the billboard via the Locked * properties.

Annotation 2020-08-28 085217.png

When you finished placing the billboard with this method turn off Lock To Camera. Now you can move the camera, the billboard will stick at the last positon. If you need further refinement, use the Transformation property or the arrow handles in the Scene Editor as usual.

Annotation 2020-08-28 085233.png

Annotation 2020-08-28 085253.png

setuptrkcam image63.png

When placing the billboard leave some room in front of the feet so that the talent can walk around.

Now if we want to put the talent behind a table we have to move the billboard there. Turn your camera towards the table (or rotate the SCENE Base Cam Transf depending on how you want to use the scene). Use the Lock To Camera method described above to place the billboard right behind the table. Then turn off Lock To Camera.

setuptrkcam image49.png

You might want to align the billboard precisely to the edge of the table. For this you can use the usual scene editing methods, like arrow handles in the Scene Editor or the Transformation property. For a better view you might want to swith to Free Camera mode when doing this.

setuptrkcam image43.png

setuptrkcam image16.png

For this scenario make sure Look At Camera is turned off.

setuptrkcam image62.png

After making the alignment switch back to the tracked view.

setuptrkcam image20.png

Now if you switch off the lightbulb icon on the BILLBOARD you can see the final result.

setuptrkcam image54.png

setuptrkcam image45.png


Let’s put back the talent and the billboard to the original position.

setuptrkcam image31.png

As you can see the billboard produces a mirror image on the floor. But it’s not quite right since the bottom edge of the billboard is way before the talent’s feet. In order to compensate this adjust the Mirror Offset Z property.

setuptrkcam image53.png

setuptrkcam image12.png

When setting up the offset you have to take into consideration that the talent will walk forward and backward a bit, so you have to find a good middle value.

Lighting and shadow

The compositing modes described so far only perform masking of the talent without any other modification of the talent image.

If you need virtual lighting and/or shadow of the talent you have to switch on Allow Virtuals on the SCENE panel.

setuptrkcam image6.png setuptrkcam image25.png

NOTE that Use Billboards has to be turned on as well, since the lighting effects are based on the billboards.

Now you can point a shadow casting light source on the talent. You also need to properly set up the Luminosity, Ambient, Diffuse properties of the ADJUSTER. Please watch this tutorial section if you’re not familar with the talent lighting basics.

setuptrkcam image23.png

You can also adjust the shadow position relative to the billboard in order to align it to the feet.

setuptrkcam image7.png

setuptrkcam image28.png

But it always better not to directly light the feet to hide the alignment problems, especially if the talent walks around.

Please only use the Allow Virtuals mode if you absolutely need the virtual lighting, because it has a drawback: it can make the talent image a bit blurry because of the back and forth lens distortion applied during the render.

Additional virtual camera movements

If you turn on Allow Virtuals you can also add virtual camera movements on the top of the real camera position. The editing and using the virtual camera paths is exactly the same as with the VirtualCam control boards.

The motion paths applied relative to the actual position and rotation of the treacked real camera. Therefore you can combine the two kind of movement. For e.g. you can rotate the physical camera while you’re applying a closing virtual motion thus achieving an interesting flying curve you can control manually.

setuptrkcam image39.png

You have to be careful. Do not use paths that moves the camera sideways too much because the talent image will become distorted noticeably.